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1\bstract

~ -~Approximation methods :~~ the ini’ .~” averaçje cost per unit time

problem with a controlled diffusion ~ ‘ u~l is treated. In order to

work with a bounded state space, ~e—~~ --~ t~*
’ reflecting diffusion

model of Strook and Varadhan~.~ although other models can also be

treated. The control problem is approximated by an average cost

per unit time problem for a Markov chain , and weak convergence
methods are used to show convergence of the minimum costs to that
for the optimal diffusion . The procedure is quite natural and al-

lows the approximation of many interesting functionals of the

optimal process..~-_

1. Introduction. In this paper , we develop an approximation and

computational approach to a particularly difficult class of sto-

castic control problems. The computational problem leads to the

approximation of the original process and optimization problem by

an interesting and simpler sequence of processes and optimization

problems , which yields much information on the original optimal

process.

Let w(•) denote an R’~ valued Wiener process, let 
‘
~( denote a

compact set and define the bounded and continuous functions

f( , ): Rr X -~ Rr; k( , ): Rr ~ ~~~ R; ~~( ) :  Rr 
-
~ r r

matrices. Let x (•) denote a non-anticipative solution to the

It~ equation

(1) dx = f(x,u)dt + o(x)dw ,

where u(.) is a non-anticipative (always with respect to w (~~))

‘ye-valued progressively measurable control function . For typo-

graphical simplicity we sometimes write x5 for x(s), etc..

~ 1 Define ~U ( )  by

(2) Y
u (X) = Tim E’~ ~~

. 

J
k(x5i u5)ds~

where E~ denotes the expectation when x 0 = x and control u(•)

is used.

We are interested in finding good approximations to the infimum

~ of y~
’(x) over all controls u(.), and to the optimal control,

and also other information concerning the optimal trajectory, in

cases where ‘y’~(x) does not depend on the initial state x.

Furthermore , we want to be able to compute the approximation and
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obtain the addition 1 ~~~~~~~~~ i nat )n , ing practical computationa~
methods.

A number of difficulties stand in !~e way of a practical computa-

tion. First, the state space Rr o~ x(•) is unbounded and the

control problem (1) - (2) will have to be modified so that the

state space is bounded. This is a particularly ticklish point,

since we want a modification which yields usable information con-

cerning the original problem. In particular situations, a great

deal of attention must be devoted to this. For definiteness , we

use the bounded process defined in Section 4, although many others

are possible. Next , we have not assumed very much about the system

(1). If y
t1(.) actually depends on x, then very little is known

about the problem . Fortunately, for many problems (perhaps the

most important ones) we can restrict attention to u(s) which are

stationary (u(S) is a stationary process), or to the stationary

pure Markov case (where u
~ 

= u(xt)). Even then , the solution to

(1) may not be unique. In practical problems , it is often demanded

that the system have a certain robustness. Criteria such as (2) are

of interest when the system is to operate over a long period of

time, usually of uncertain duration and with an uncertain initial

condition . It is usually desired that the control be stationary

pure Markov, and that for the controls u() in the class which

are to be considered there be an invariant measure and the

measures of x(t) tend to as t ~ ~ for each x = x0. In

certain cases (e.g., Kushner El]) one can restrict attention to

such controls. In gener~ l, little is known about the continuous

parameter problem , and many of the difficulties in the way of

establishing convergence of a computational procedure are due to

this. Also , it is usually hard to approximate problems over an

infinite time interval , unless the approximation and limit

processes are stationary . Furthermore , the ergodic subsets for

each approximation may depend on the approximation . In any case ,

the procedures to be developed here are very natural , provide much

information , and do give the desired results under broad

conditions. We will later make an additional assumption on the

system.

Our approach follows the ideas in Kushner (2], (3] and Kushner

and DiMasi (4]. The problem (1), (2) is approximated by a control

problem on a Markov chain (with approximation parameter h), and

weak convergence methods are used to show that certain interpola-

tions of the sequence of approximating chains oonverge weakly to an

- .  - 5 - . --- -- S ‘ .  ~~~~~~~~~~~ -. - . .  - . S



cj . . ~~~~ p~ocess. The . ie j  s ~ i i  it dc’l of information on

th~ optimal process; e . j . ,  uivari nt ‘ r - i ’ures and joint distributions.

A formal dynamic programming approai .h ‘ o the optimization of (1),

(2) is given in Section 2, Section 3 a~~jues for a “computational

approximation ’~ and a bounded state space. The actual form of the

bounded state space model , the Strook—Varadhan model of a reflected

diffusion (5], is discussed in Section 4. This model is used partly

for the sake of specificity and partly because it allows us to
illustrate some interesting features of the weak convergence and

boundary time scaling . The actual discrete state model is developed

in Section 5 and Sections 6 and 7 give the weak convergence results.

2. A Dynamic Programming Sufficient Condition for

Optimality for (1) , (2)

Let denote the differential generator of (1):

= ~ f~~(x~u) ~~~~~
--  + ~~a1~~

(x) 
~~

a ( S )  = o ( ~~) c ( ~~) ‘/ 2 .

When evaluating .V~’F(.) at t,~~, for a C2 (Rr) function F(),
2 rset x = x,~, u = u

~
. Suppose that there is a C (R ) function

V(.) and a constant V such that

(3) inf [~/~
UV(x) + k(x,cL) — V] = 0,

~

where is now treated as a parametrized operator. If there

is a Borel function 
~~~

( )  on Rr such that c~. = ~~(x )  minimizes
at x in (3) for each x £ Rr’, and to which there corresponds a

process (1) such that EUV (xt)/t 
-

~~ 0, then

(4a) V = u r n  .1 Eu I k ( x  ,~~~ )ds.
t+co t X J O  S 5

~ /

If , in addition , v (•) is any ‘~ -valued non-anticipative (w ,t) 
-

progressively measur able function (hencefor th called a control) ‘ :
corresponding to which there is a solution to (1), and if

~~~

. E~V (x~ ) -
~ 0, then

1(4b)  y < u r n  — E’ I k (x  , v ) d s , .—~~~~~~~t X j 0 
S S I / 1 i~~ 

-
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~~~i ii(.) is optim~i es~ ct “ ~‘ich ~‘ ( .)  in the sense the’

< for any x0 ~ ‘~~her f~ ~ed ‘~~~~ ian dorn . Under i~~( • )  or v (~~
(1) is homogeneous, but there is no4 necessarily a unique invariant

measure.

3. Bounded State Space Approximations. The approximation and

computational method developed in [2] is roughly as follows. Let

u(s) be fixed , and let it be a function only of the state x. We

derive a family (parametrized by h) of Markov chains. For fixed

u(s), the sequence of (suitable) continuous parameter interpola-

tions of the chains converge weakly to the solution to (1), as

h -
~ 0, under broad conditions. For each h, we have a controlled

(indexed by u(S)) family of Markov chains. Optimize , usin j the

appropriate Markov chain version of (2), and obtain the minimum

value function for each chain.As h -
~ 0, the sequence of minimum

values converges to the infirnurn , over a large class of comparison

controls, of the value function of the original problem. Also ,

many properties of the approximation s converge to similar

properties of the limiting optimal process.

Since our interest is in feasible computations , as well as in

convergence, it is necessary that for each h the state space of

the approximating chain be finite. This requirement necessitates

revision of the original system (1). The following are among
several possibilities that can be dealt with .

(i) The state space may be naturally bounded , in that there

are bounded sets G0,G1 such that if x0 ~ G0, then x~ c for

all t and all u (s).

(ii) If x0 
£ G0, then the approximating Markov chain remains

in G1, for all h, under the optimizing controls.

(iii) Impulsive control terms ([2), Chapter 8) are added to the

cost function , such that the state is guaranteed to be “impulsively ”

driven into G0, if it ever leaves G1.

(iv) A bounded set G can be introduced , such that x~ is
not allowed to leave G = G + 3G. To guarantee this, a suitable

boundary process is introduced on 3G.

For concreteness in the development, a particular form of (iv)

will be dealt with. We let 6 be a hyper-rectangle and suppose

that x~~~ is reflected from 3G. A hyper-rectangle is chosen only

to simplify the specification of the approximation on the boundary .

Any region for which a specification with the proper convergence
ThIS PAQ~E IS BEST QUALITY FRAC?ICAB.LiE
PBO~~0QP1 Y~JR2USHXD TO DDC — —~~~ -



- 
5 ~~~~~~~~~-~~- - - -  —5-- -~~~~~~~~

~~~~~rtics exists can 
•

4. The Submartingale 1 rob.Leni of Stro.~~ ‘ad Varadhan [5] in C.

In order to assure ourselves that tk ’~ reflection is well defined ,

assume

(Al) for each i, a.
~~
(x) is strictly positive on the boundary

planes of G which are parallel to Cx: x1 
= 0),

where x1 
= ~

th component of x.

We introduce a boundary control and cost function . Let be

a compact set, and define the bounded continuous functions

y(~~,~~): OG X 

~‘o Rr ; k0
(.,~~): ~~ 

x ‘
~O 

-
~ R; ~5 ( ) :  OG -

~ [0,1].

Let the vector y(x ,~~) with origin x point strictly interior

to C for each x £ OG and L~. £ 
~o ’ For A C Rr set

IA (x) = indicator of set {x: x £ A}, let x() denote the generic

element of Cr [O ,~~) (Rr_valued continuous functions on [0,°)) as

well as the solution to (1). Hopefully, no confusion will arise.

Define C~ = Cr [O ,00) fl {x(’~): x~. C G , all t < °~} and
= c-algebra on C~ induced by the projections x~ , s < t. For

this reflecting diffusion ,admissible controls u (S) are ‘~k-valued

when the process state x~ COG , and are ~~0—valued when the process

state
~~

x
~ 

£ 0G. Fork q(•,~~) c C
2’1(G x [0,°~’)) and admissible

u (), define the function F
U (.,.) on C~~[0,°~) by

(5) F~~(x(~ ),t) = q(x~~t) - q(x0,0) 
- 

1 [ ~ 
+

For the moment , let u(S ) depend only on the current state x.

Suppose that for some y £ ~~~, there is a measure pU on Cr such

PyCX 0 = y} = 1 and for each q(.,.) in C ‘ (G ~
‘ E0 ,~~)) for which

P(x)q~~(x 1t) + ‘y ’ (x~~~u(x))q~~~~(x~~~t )  > 0 for all x £ OG , and all t > 0,

the process CF
~~
(. ,t),.

~~t
,P
~~
} is a submartingale. Then P~ is

said to solve the submartingale problem for initial value y. If ,

in the above, the vector y can be replaced by a measure on C,

and P~ Cx £ I’) = V (F) for each Borel set F , then is said
0 0 0 0

to solve the submartingale problem for initial measure
If u(s) depends only on the current state x, then the solution

1C ‘ is the set of uniformly bounded continuous functions on
G X [Ø,~~) whose derivatives up to second order in x and first
in t, are continuous and uniformly bounded .

++ and uf is ~~~~~. measurable.

L -~~~ ~~~.‘ -- 5 -  - -5- . ‘ - --- ~~~~ — — - .



to the submartingale problem gives the desired reflected diffusion ,

and ‘1 (x ,u(x)) is the average “direction of reflection ” at x ~
and P(x) is a scale factor which determines the relative time that

x ( . )  spends on OG ( [ 2 ] ,  [ 3 ] ,  [~~j .  Since P ( . )  only a f fe c t s  the
time scale , and not the costs ([3], [2], Chapter 10), for our

modelling purpose it is s u f f i c i e n t  to set p ( x )  1, which we will
do.

Let PU solve the subrnartingale problem . There is a non-

decreasing scalar valued process i - ( ) ,  which only increases when

x
~~ 

C OG , and is such that for the above q ( , •)

(6) F U ( x ( . ) , t )  _ J i q  (x ,s) +

is a rnartingale (w i t h  respect to {p U, .~~~~ J ) ~~ Furthermore , there

is a standard Wiener process+ w (~ ) such that under P~ ,

(x(•),u(~ ),’~J( •)) are non—anticipative with respect to w() and

w.p.l.

t t
(7) x~~ = + J f(x

~
,u
~
) IG (x )ds + 

J
o (x)IG (x )dw

r t
+ j I OG

( x ) ’
~

(x f u ) cL1 .

For the control problem , we may wish to deal with a lar~er class

of (admissible) controls than the stationary pure Markov class.

We can still speak of a solution to the submartingale problem , but

then the measure Pu or P~ must be defined on the appropriate
0

a-algebra on the product space of C~ and the path space for the

control process. If this extended submartingale problem has a

solution , then the non-decreasing process i.i(.) and Wiener process

w ( ~~) will  still exist and ( 6) , ( 7 )  hold.

A modified control problem. Suppose that there is a solution to

the submartingale problem corresponding to admissible control

u ( • ) ,  and ini t ial  condition y. Def ine  .(u (~~) now by

(8 )  1
U (y)  = Tim 

~ 
E
~ (f 

k(x ,u ) IG
(x )cls + J k O (x~~

uS)IOG (x )d
~

A
S}.

+To construct the Wiener process w ( ~~) ,  we may have to augment the
pro babili ty space by add ing an independent Wiener process.

L
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Si~~~ p = 1, we can set s. The formal dynamic programm:..j

equation (3) is replaced by

inf [.V
U
V(x) + k(x ,-’.) — fl = 0, x c- G ,

t~
( 9 )

inf [V’(x)”(x ,~~) + k (x,a) — ‘,] = 0 , x L
X 0

where V( S ) is now assumed to be bounded . If there i~ a solution

to the submartingale problem corresponding to admissible control

v(•) and initial condition y, and also a smooth function V( S )

and constant y solvinq (9) , then

(10) V

If there is a Borel admissible control u(S ) which attains the

infinium in (9) , and for wh ich the submartingale problem has a solu-

tion for each initial condition x , then V = VU (y) and ~i ()  is

optimal. We emphasize that although (9) will serve as the basis of

our approximation, it need not have a solution of any sort for our

method to be valued.

5. Discretization. There are a number of techniques for getting an

approximating sequence of Markov chain control problems with  the

correct convergence properties. We use the method in [2] mainly

because it is relatively straightforward , fairly well understccd

and we can refer to existing results. The method is basecLon a

finite difference approximation with difference interval h. A

particular (but natural) finite difference approximation to (9) is

used. It makes no difference whether or not (9) has a smooth solu-

tion , for the finite difference approximation is not used to

solve (9) . After a suitable rearrangement , the coefficients of

certain terms in the finite difference approximation will be

transition probabilities for an approximating controlled Markov

chain. This is the only use to which (9) will be put. The method

gives us an approximating chain simply and automatically. A

detailed outline of the method and of some of the convergence

properties will be given , but many of the details which can ~e

found in the basic references (2], (3], [4] will be omitted .

Let e. = unit vector in ~
th coordinate direction , and assume for

convenience that each side of G is an integral multiple of h. 4

_ _  -5 -~~~~ —-~-~~~.—--S5-----.’.~~-5 -~~~ ~~~~~~ —~~~~~ - - - . .— —~~~ - -~~~~~~~~~-. ~~~~-
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Le~. denote the .t~inite ditference grid on C, and set - ‘

- G
h, 

where Ch is the finite difference qrid on ~~. Now , let

us discretize (9). On ~G , use the approximation

V (x) -
~~ [V(x+e.h) — V ( x ) ] /h , if ~~~~~~~~ > 0

(11) 3-

V ( x )  ~ [V ( x ) — V(x—e .h) ]/h, if y. (x ,~~) < 0.

• In G , use the approximation

V (x )  -
~ [V(x+e.h) — V ( x ) ) / h , if f 1(x , - ~) > 0

( 12 )  V ( x )  - [\‘(x) — V ( x _ e ~~h )  i / h , if f .  (x ,L’.) < 0

V ( X )  [ V ( x + e . h )  + V ( x - e .h )  - 2 V ( x ) ] / h 2 .

The approx ima t ions  fo r  V ( x )  , i ~ 
j , are ion~~, and the reader

i J
is referred to [2] , Chapter  6 . 2  fo r  one set of poss ib i l i t i e s .

Simply to avoid w r i t i n g  these down here , we suppose tha t o ( n ) c ’ Cx)

is diagonal. This assumption is not re~juired by anything except

our current laziness. it does not affect the outcome , only the
precise form of the functions 

~~~~~~ 
and ~h (.,.) introduced

below .

Define Qh (x,
.), th (x) and 

~~~~ 
by

= h ~ $ f (x , z) + ~ e~~(x) , x L

= 
~ ~~~~~~~~ , X C

= sup

(where u ranges over the appropriate set ‘* or

~t
1
~(x) = h/Qh (x) on

h2/Qh (x) °~

Approximating the derivatives in (9) by (ll)—(12) and rearrang ing

terms yields the following equation , where and vh (.) are

used to denote the solution to the discretized equation and we use

the definitions g~~(x) = niax [g(x),0] and g (x) = max (0,—g (x)].

-_____ 5 - - -S - -5  • - • - •~~~~~~~— - - S - 5~~~~~~
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(13) h 2
Vh 

= inf [-Q (x,~~)V
h (x) 4 ~ v x ~~e .~~ (h f  (x ,- ’ ) + c~~(x,/2)h 1 1 1

+ h k ( x ,- ) ] ,  X L G
h
,

hV
h 

= ~~~ 
[_Q

h ,~~) V h ( x )  + 
.
~~~ Vh x±eih)~~~(x,~~) + hk

0
(x ,~~) ] ,

0

x 
~ ~

G
h
.

Def ine  ph (x~~~~e h H ~) = (coefficiont of vh (x±e.h))/~ Cx),
pb (x x !~~) = 

h~~~ 
Q
h

(x ,A )1 /
~ h

(x). Divide (13) through by
Qh

(x) and rearrange to get

( 1 4)  Vh (x) +~~~
1
~~t

h (x ) = in 4 [ ~ vh (x~ e . h ) p h (x ,x±c.h~~~)
~~L~~ ’ j~~ 4 1

+ Vh (>:)I (x ,xH) + k ( x ,~~)~~t
h ( x ) ] ,  x C G

h~

and s imi la r ly  for  x in ~G1
, where ~~ and k are replaced by

and k 0 , resp.  D e f i n e  p h (x ,y ~~~) = 0 fo r  a l l  x , ’~ other
than y = x or y = x ~ e.h fo r  some i. Then ~p

h
(x ,.~~~) x ,

y £ Gh} is a transition probab]litv f o r  a c o nt ro l l e d  ~1arkov chain.
Let denote the random va r i ab l e s  of the chain , and def ~ nc

= ~k in G , and ~2 ’(x )  = on 3G , and r e d e f i n e  k ( x , -~)
to equal k0 (x,~~) for x C ~G. Then ( 1 4 )  can be r e w ri t t e n  in the
form

(15) vh (x) ~
h.t

n ( x )  = i n f  [EaVh (~~~) + k(x ,~~)Lt
h (x) ~~, C

X 1 h

In (l3)—(15) , we supposed that Vii is a cons tan t .  This  is almost
equ iva len t  to the assumpt ion  that  there is only  one recurrence
class for  the cha in  under  the  opt ima l con t ro l .  If  there is more

than  one recurrence  class , the numerical problem is harder. Lot us
• henceforth assume

(A2) For each small h and under each stationary o~~~1ar - ;

control, there is only one recurrence class.

This assumption seems to hold in very many cases of practical

interest. It can be dispensed with, but then the problem of

actually solving (13)-(l5) is much harder. Under (A2), (15) can be

solved by either Howard ’s iteration in policy space for semi-~1arkov

processes , or by a version of the backward iteration method for the

— 5- .- • - • - -  - • - .  5- — 5 - -
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~~‘c~~age cost per u n i t  t ime p r o bL e m  (see , e.g., ScIa- :eitzer ar~
Federgruen [ 8 ] ,  but  adapted to a ~em i—M arkov process ~icd e1) . There

is an optimal stationary pure Nai :kov control  u h ( . )  for  a l l  smal l

h , it is the minimizer in (15) , and it is optimal with respect to

all controls  for  the d i sc re te  problem . The ‘ Semi -Mark ov ” point  w i l l

be returned to below . The optimal solution is given in the first

line of (19).

Discussion of (14). For y €. G
~ i we have for any s t a t iona ry  pure

Markov control u ( S )

u - h  h . h  h( l 6 a )  — ‘n k n = y ,  u ( s )  used]  = f ( y , u ( y ) ) ~~t (y )

u - h  ..h h ,
— 

~~~
1 ’ n 

y ,  u ( S )  used]  = c (y) c (y )~~.t (v) +

+ o (~ t
h ( y ) ) ,  x L C

h~

For y C

• u h h 1 h - - hE 
~~n+1 

— ‘n ~‘n 
= 

~~~ ‘ 
u ( ) useci ] = ~ (~ ‘ , u ( y )  ) .~t (y)

( l 6 b)
u - h  • h h  . hcov
~~R +i 

— y ,  u ( . )  used]  = c ( ~~t (:4’)).

These “ i n f i n i t e s i m a l ”  p rope r t i e s  (der ived in [2 , [ 3 )  , t oge~~h or

wi th  (15) , suggest  a close re l a t i on  between the c o n t r o ll od  chain ,

and the cont ro l led  r e f l e c t e d  d i f f u s i o n .
These re la t ions  are brought  out q u i t e  c l ea r ly  when the cha in  is

su i t ab ly  i n t e rpo l a t ed  in to  a con t inuous  parameter  process , and ( 15~
( 16)  sugges t  .ieveral u s e f u l  i n t e rpo l a t i ons .  F i r s t,  ~~ note t~ait

solving (15) is the on ly  compu ta t i on  t h a t  need be done.  Equa t ion

( 15) is not q u i t e  the d y n a m i c  p rogramming  equa t ion  for  the av000dje

cost per u n i t  t ime for  the con t ro l l ed  chain ~~~~~ since has

a s ta te  dependent  c o e f f i c i e n t  ~t
h (~~~ . However , it is the  clvr .amic

programming equation for a semi-~1arkov process or , equivalently

for the types of continuous parameter interpo!ations which are

discussed below .

Let ~h denotesthe invariant measure which corresponds to the

optima l control .  H e n c e f o r t h,  unless  o therwise  ment ioned,  {,~~
r e f e r s  to the optima l chain,  with initial measure

We now choose an interpolation method and show that the sequence
of interpolated processes converges weakly to a solution to the

submartingale problem corresponding to some admissible control
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u(’) , and that this solution is ui optimal one , w i t h  co~;t rate

V = u r n  Vh.
h-~ 0

Either of the fol lowing two piecewise constant in terpola t ion s  wi l l
serve our purpose.

h h h h n—i hInterpolation 1. Define t~t (.
~~~

) = ~~~~~~~ t = 
~ 

s t . .  Defi n e the
i=0 1

h .h Ii hsemi—Markov process ~, ( . )  by ~ (t )  = on [t
~~
,t .j). This

interpolation was used in [ 2 ] ,  [3).

Interpolation 2. Let ~h (.) denote the Markov jump process on

G
h 

defined by:

I f  ~~~(t )  = v , then t he ave r age addi t ion a l t ime spen t in st at e y

befor e a j ump is ~th (y )  , and P {next state = y ’ I current  state
= p (y , y  l u  ( y ) ) .  There is a s light  ambigui ty  here since it is

po ssible that  ph ( y , y I u l~ (y) ) ~ 0.  But , this  should :ause no con-
fusion — for it simply means that there is a j u mp of “zero ”

magnitude . The average interjump times can be normalized to avoid

this , but it hardly seems worthwhile. Note that

P{ jump in (t , t+~~] I ~~~ (t )  = y} = (~~~/At
h ( y ) )  + o(~ ).

This interpolation is developed in Section 8 of [4].

Neither interpolation is always preferable to the other. Inter-

polation 2 could have been used in references [2], [3], but there

did not seem to be a need for it then . There are advantages to

having an in terpola t ion which is a continuous parameter Markov chain
in that  certain concepts (such as stationarity) have a clearer
meaning ; on the other hand it is sometimes preferable  to work with
interpolation times that are determinis t ic  functions of the current

• state, since then there are fewer random variables to worry about.

The limiting processes (see Sections 6 and 7) are the same for both

interpolations. In Case 2, the average sojourn time in a state y

(before the next jump , whether of zero value or not) is

precisely the interpolation interval for Case 1. In both cases, the

time spent at a state y on the boundary (0(h), per sojourn) is

greater than time spent at a state y in Gh (0(h 2) per sojourn ,

unless there is the complete degeneracy c(y) = 0). This property

is a consequence of our def in ition of ~t
h (y for y C

- -
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(to correspond to ~(y) 1).

For either Interpolation 1 or 2 ,

(17) urn Eh f k (~~~,u
h)ds/t ,

where u~ = uh (~~ ), and in~ icatcs that u
h is used. The in-

• variant measure for either interpolation ~~ ~h , where

(l8a)  = At h ( y ) l h ( y ) / ~ ~ th (z i~~~z)

• Also ,

(18b) ~h ~
y

Equations (17) and (18) are not hard to verify . For example ,

(18) follows from the ergodic theorems for Markov chains (see

Chung [6), Section 1.15 , Theorems 1, 2 , 3; see also [2],

Chapter 6.8, for similar calculations). It can also he obtained

by direct verification of the Kolmogorov equation using the in—

variance of 71 h (.) for the discrete parameter chain. To get (l~ )

write u~ for u
h (,~~

1) and use (15) and the same ergodic theorems

to get

n- l  n-l
(19) = ~~~ [E h ~ k (  , u~~)~~t~ /E h 

~>~ 1=0 ~ ~ ~ X j=~ 
i

n-i n—i
= lirn [ ~ k ( , u~ )-~t~ / ~ ~t~ ]

n i=0 ‘ i=0
( w .p .  1)

= urn  J k(ch uh)ds/th = i~~~~ 
J

t
k(~h uh)ds/t

ti 0 S S ~ (w.p.1) 0 S S

(w.p.l) t-’<”

r t h h h
= lirn J E

~
k (
~~~

,U )ds/t.
t-~ 0

Similar ly,  the first limit in (19) equals

(20) = ~ fl h (y)k(y,uh (y))At
h (y)/ ~

y y

= ~ ~
h (y)k(y,uh (y))

y

-5 - -5
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Let V ( . )  denote a s t a t i ona ry  i ure  M arkov  con t ro l .  ‘iiic r ~ ( I  T~
implies that (here ~~~~~~ now rc~ er to the variables un~ier  c o n t ro l

v(.)) fo r  any x

E
V t h k ( h v ( ~~~) )

(21) V
h 

< u r n  ~~~~~~ ~v ,h
- 

~~

The proof of optimality of uh (.) w i t h  respect to any control which

is not necessarily stationaa-v pure Markov can be based on a method

• of Ross [7] and is omitted.

6. Weak Converqence . ~.‘e will worh with IflLerpolatioii 2 , sinc u it

is a st r ict ly sta t io n a ry  proces~~. The method wi l l  be outlined , but

the proofs  will be usually relerred to when alread y available
elsewhere. So f a r , we have a seuuence of s t a t i ona ry  pure ~iark ov
controls ~u

h (.)}, corresponding stationary continuous parameter

Ma rkov chains f ; h ( . ) }  in v a r i a n t  measures  f~~h } and min imum costs

where

—h r h h -. i-i h
= /. i-i ( y ) k ( y , u (y)) = ~ (y )k ( y , u ( v ) )

• - h Ii
L ~

- 
~~~~~~ 

~~ 
(v ,u ( ‘ s ’)  )

:4’
~~

-

and

(22) V
h
t = J . [ k ( ~~~, u h ) I

c
(
~~~

)ds + 
f

t
k (~~~, 0h ) I

~ c ( .
~~

) d s ] i

where Eh denotes the expectation under initial measure ~~~~~
, and

we use u~ = uh (~~~). We often write ~h (5) as Y~ , etc., for
typographical simplici ty,

We obviously can ~.;ritc

(23) = + 
J I c

(~~h ) f (~~~,u
h ) d s

+ 
j 0

1 
~~~~~~~~~~~~~~ 

+ Bh t + B~~( t ) ,

_ ______ _ _  ----- - -5 —- -5---—-J
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whore

h ~h ,-1~ -h hB (t) ‘G ~~ ) L d ~~ (s) — f (
~~~,

u .jds]
J~ 

S

h ~-h -h h hB0
(t) = 

j 0
1aG~~~s~ 

[dc~ — ~(c, u )dsj.

Denote the two integrals in (22) by Kh (t) and K~~(t), resp.,

and the first two integrals on the right side of (23) by Qh (t)

and Q~~(t) , res~ . Let Dm {O ,a) denote the space cf Rm valued

functions on [0,~~) , continuous on the r igh t  :~nd with left—hand

limits (Bi llings ley  [9 )  , Lindvaii [10) , Kushn cr  [2] , Chapter 2)

endowed wi th  the Skorokhod topology. If  a measure  .

~ 

ind uces a
process x~~(.  ) w it h  pa ths  in Dm [O , ,~,) W . 1 . J  an d  ~~~

) t i dh t ,

we abuse termi nology and say tha t  f X ’1 ( . ) )  i n  t i g h t .  If 
~~

converges weakl y to a measu r e ~ and ‘~ induces a process X (~~)
with paths in Dm

[O , ,~ ) w . p . l , we say tha t {X ” ( )  con’~cr qos
weakly to X (’). We occasionally uce Skorokhod iirheddinq ([Ii],

Theorem 3.1.1, or 12], Cha pter  2) , wh i c h  says t hat  if X~~( )  ‘ Y ( )

weakly in Dm [ O ,~~), then there arc processen X ( ) , N~~( ) with
paths in D

m [O ,co) and which induce the name measures on t ) [ ~~~ ;~~~ )

as do X(’),X~~(’), r e s p . ,  and are such t h a t  >~
“ () ~ X ( )  w. .3.

in the Skorokhod topology. Since a ll  our l imi t  processes wil l  L-c
continuous w.p.l, this implies that X’1 (t) -

~ 
X ( t ) ,  u n i f o r m l y  or~

bounded intervals. Also , we omit the tilde notation . The
following theorem follows from the results in [ 4 ) ,  Section 8.

~~~~~~~~~~~~~ f~~h ( .~ x h ( )  Kh ( . ) ,  fl
h
() B

h ( ~h () ~~~ ( . )  }
• {

~~ ( ) } }  is tight on D r [0~~’) and all limits have c o nt i nu o us
paths w.p.l.

We will next  characterize the limits of

Let us choose a weakly convergent subsequence , also index ed
by h , and henceforth fixed . The subsequent results w ill  not depend
upon the selected subsecwence. Denote the limi t by ~

,( .) ,  K ( • ) ,
B( s ), B0(.), Q(.), Q0(.) . By construction , Bh (t) and

+Theorem 1 does not require Al or A2 and holds whether the initial
conditions are random or not. It needs only the boundedness and
continuity of f ,o,k,k0 and ~~. Also , ~

h can be replaced by any
pure r’larkov control.

— - — -- —-5— -•.-- —-5—-. • - -5  —
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are martinqalos ( w i t h  rcs~~ ct; to the ~_alqe )ras B~ In-

cluced by 
~~~

, s < L) and an nas’ calculation yields that

h 2
E supIB

0
( t )  I < cons tan t .hT .

t<T

Thus B0(~~) is the zero process.

The quadratic variation of Bh (.) is

f~~~h (~ h) I~ (~~~)ds,

where ~
h (x) is such that it c o n v er ge s  to o (x)c ’ (x) as h -

~~ 0,

u n i f o r m l y  in x , end sup P h ( t )  - I or each t > 0.
h

{ !B h ( t ) 1 2 }} is u n i f o rmly in tegrab ie  for  each t .  Let denote
the c—al gebra in duced by ~~~ , B ( s ) , K ( s ) , K 0 ( s ) , Q ( s ) , Q ( s ) , s <  t }.
Let N C denote an E. neighborhood of G. In 12 ) I  Lemma 1, it
is shown that for each real T > 0 there is a constant i-S’ su. h

that , for Interpolation 1 and small C > 0

• — h -.1-i - -( 2 4 )  L I ( i -, ) I  (c, ) d s  c J~ E ,
x j  N~ S G s — I’

u n i f orml y i n  u , h (a l though u did not appear in the der iva t ion,

only an upper bound to the values of the d r i f t  iunct ion  f was

used in the derivation) . The result (24) depends only on the fact

that the component of the diffusion term c (x)dw orthoqerial to the

boundary is u n i f o r m ly non-degenera te  on ~G; . e.  on ( A l ) .

Estimate (24) also holds for Interpolation 2, and is crucial  for
the rest of the development. It says that neither the approxima-

tions nor the limit can “ l inger ” near (but  not On) the hcundary.
In p a r t i c u l a r, it implies that  the probabi l i ty  is zero tha t  over
some subinterval of [0,T] the paths for the approximations will

be in N C fl G and the limit will be on ~~~~.

Theorem 2. Assume Al. fB(t), is a continuous martingale

with quadratic covariation J I G (~~
)o(

~~
)o (ç )ds.

Proof. The proof , using (24), follows similar calculations in (2],

[3], [4]. Let qh (t) represent any of the vectors in

(see Theorem 1), let n denote an arbitrary integer , t.~ ~
numbers less than or eciual ti t ,  let s > C and let a (•) denote 

-—-5 —_ -- —-------•-•— — • • •- • • . • • •• . • • . .. - - • •- - -
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a continuous real valued  f un c  ~ ~on fly weak collver(j( :iae , ~ koro~~I v a
imbedding and the u n i f o r m  integrrd lity of [~ B1

~(t) ~} b r  each t,
the result  (mar t in ga le  property  of 13h ( . ) )

E hg ( q h (t 1) ,  i n )  [B~~(t +s )  - Bh1 ( t ) )  0

implies

Eg (q(t1) , i < n) [ F 3 ( t f - n )  — 1 3 ( t ) )  = 3.

Also , the r esu l t

E hg (C!h ( t )  i < n) I ( [3 h
(~~ ) - B ( t ) ) (B h (tfn ) -

- I i ~~~~~V 1 (~~~) d s ]  0G -~

together  w i th  the wc:k convergence , Skorokhod 1mb: . idinq and ui- i
in t e gr a b i litv  of f ! B h ( t ) 1 2 } and ( 2 4 )  impl ies t h a t

E g ( q ( t ~ ) , i < n) ( B ( t + s )  — b ( - t ) )  (B ( t + s )  — 1 3 ( t ) ) ’

i t
— 

I ~~~~. (
~ ) 

~~~ ) (
~ 

) ) d sj  = 0.
—, ~ S

The arbitrariness of g(~~) , t, t + s , t ., i < n , an d  n •i ;m:Iy
the theorem . Q.E.D.

We next need a representation for Q(~ ), Q0 (.), d (.) and K 0 i~~) .
It is easy to see t h a t  a ll  these f u n c t i o n s  are abr olu t e l y con t i n u ou s
with respect to Lebesgue measure .  Thus , the re are  measurab le  (~~, t )
functions g(.), 

~~~~~~~ ~
•

(~~~ and k 0
(~~) such t h at , fo r  a l m os t

all uJ , t ,

~t (t
Q(t) J q(s)ds , Q0 (t) J ~0 (s)ds0 0

(t
K(t) = i~(s)ds, K0(t) = l 

~ 0
( s ) d s .

- J o  J O

~Actually, uniform integrability of {IB h (t) 1
2} (implied by

sup Eh !B
h (t) !~ 

< a’ is not needed . Since B (S ) is a square
h
integrable continuous nartingale , its quadratic variation can be
obtained by a “localization ’ of the arcTument.

---- -5- -
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We can now proceed in two ways  , :‘i ther  ~‘.‘orh i ne wi t h  yc ’i ier a l • i :‘ ad
ran dom controls  or hy imposing a ~Dnvexity condi Lion and ~n in~j an

impl ic i t  fun c t ion  theorem.  We t a k e  the la t te r  (and ea s i e r )  a ; iu rca~~1. .

Ass ume Al and A2 .  Le t  f , k , k 0 , y , r be con t i n u ou s and

let the sets ~f ( x , a )  , k ( x , - ~) , ~ & g ( x , *) and ~~ (x , - )

e ~I~ } g0 (x, ~~~) he convex for each x .  Then t h e re

is a control u(~ )~ w i t h  va lues  U ifl ~~~~ when ‘, ‘- and in________________ --5- -—— • • •- S — —— S
when i. £ ~C nue n u ch  t h a t,  fo r  a lmost  a l l  ~- , t ,

L ( t )

( t )  = 
~~~~~~~~~~~~~ 

I
~~ G

L.
t

)

h ( t )  = k 
~~
‘
~~~~‘

‘-‘ t ) ‘G ~~~~

~ 0
(t )  =

Proo t. D e f i n e  g ( t ) = (f(t) ,k ( t ) )  and  g 0
( t (  = ( f

0
( t )  ,h

0
(t

The proof uses the  b o r i c  e s t i mat e  ( 2 4 )  and the method of ~2],

pp. 182—183. Dv (2.1 ) and [ 2 ) ,  pr . 182—183 , f or  almost  al l  - , t

d (t) ~ -

C 
~~~~~~~~ ~~~~~~~~

f~~on wh i c h  rho  rer ’a~ t ~o i l c r -~ by the  ~ cShan e—Wa r  f i e l d  I n e d fc i t
f u n c t i o n  t~~ee rer: an in. ~~

] , Theor~ m 9 . 2 . 2 .  (‘e P . D .

Summing ui the re~ u lt s  of Theorems I to 3 , wv cet the repre-

sentation (under Al and A 2 )

(25) 
~t 

= 

~o ~ f Ic(~~ ) f (
~~

i u
~~
ds + J I ~~~(~ ~~~ ,~~)ds ~ 13(t),

where B(t) is a continuous martingale with q u a d r a t i c  var i a t i o n

(~~~)ds.

+This control is also non—anticipative with respect to the ~~~~ -introduced below (25).

_ _ _  -5- — --- -5—- -



Al~ e, there is a Wiener i~~occss .‘ ~ ) , wi th  r r n ~~:- ;t to ‘.~~~~
- .ich al l  be

other processes in ( 2 5 )  are  neii— : eticipntiv ~ a n - . i such her

f t

B ( t )  = I , ( ; j c -  (
~ 

) ) d w ( s) . :b v :~~u s iv , by the -oak  coover ~;enc ’ ,
j 0 G 5 - ,  

—

is in ~ for  all t. ia~ 2 denote the dil ferentiol cjencrarer

associated wi th  (25) in C. by a sli ght mod1~~Loation of the

argument associated wi th  ( 4 0 )  - tr: d ( - 1 1 )  in [ 3 j  , we can shaw th at

~ ( 
. ) solves the s u b — m a r t  i n t ’l e ~- c- ~ta em .

Furthermore , (
~~

) is a srat iona ry proc-osn . Tot its i n r ar i a nt

measure be denoted by ~:, ~~~~~~~~~ s the weak  limi t of ~~~~~~~~~~ , and

let ~ = fin ~~~~ . then the dtstrihation of £, ,~ in k. ~v ( 2 2 )
h

( 2 4 ) ,

(26) :~ [
~ 

I . (, ) b (~ ,~~ as- ~ - I .  (a  ) !: ( 
- 
,~ [ ) d c j.

S n ’ a  j , S r S - •

Remarks. The limit process ~, ( ) is stat in : or ’ . , as Ia t~~e ~ r f  f t.

f( ) , bu t we have no t  been a b le to, show tha t • h~• no is a r

( re f l e c t i n g  d i f f u s  c-n ) 1 r o c c n r ;  w i L e  the saran di ~
— t n i h u  L i  c . -

probably is such a ~1arkov C T c e s s , as t h e r e  L s O L - : b l v  in a

s ta t ionary pure  ~ arkov  c a ntr o l  u ( )  such th a t 
~~h~t ) =

w . p . 1 .  In any cane , our method gives much In formation c-n the

optimal  process ~ 
( . )  ; e. e . , the m u l t iv ar i at c ’  d is t r~~b i t uion s  of

( . )  cor.ve:ge weak ly  to these  of ~ 
(
~~

) , as d c  the d i s t r i b u t  ~.c-ns

of any bounded  me a s u r a b l e  f u n c t i o n a l  F ( ~~’~ (~~) ) ,  i f  F ( x~~~) )  ~~g

continuous v . p . l  w i t h  the respect  to the measure  induced by ~~~~~
Indeed , one of the g rea t  aci:antaq-2 s of the weak convergence  mathoci

is t h a t  it  y ie lds  such in fc ro . at ion , in a d d it i o n  to approx ima t ions

to ~~ . Also, ~ = average cost per unit time for c (•), and is the

l imi t  of the average costs per unit time for  the sequence of

approximations.

7. Optimality of the Limit ~~~~~ Deing a l imi t  of opt ima l
a p p r o x i m a t i n g  processes , ~~~~ is a aood c a n d i d a t e  for  o p t i m a l it y

for  the orig inal  o p t i m i z a t i o n  problem (wi th  t h e  r e f l e c t e d  d i f f u s i o n

m o d e l ) .  Cer ta in  o p t ima l i t y  p roper t i e s  are easy to show .

Theorem 4 .  Assume Al and A2. Let v ( )  denote a cont inuous

stationary pure Markov control, such that the corresponding re-

flecting d i f f u s i o n  ~~~
( . )  is ~~4que (in the weak_ sense) and ha c a

- -
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unique_ invariant_measure I~~
’
. ~fj~•~~ (where we let the

initial measure be u ’
~~ .

Proof. Let and -Y’(.) donate the discretized and inLer~:’oJ.atce

processes , rc ’sp. , co r r e spond ing  to the f i x e d  cont ro l  v ( ’  . ‘it a n
the cost ~ .- ,h for the interpoleaod process is ~ to

opt imal it :v c f  ~
h . Let r i ’ , ‘ deoote any i n v a r i a n t  r - a a . ;u r e  fo i

Then ( . } and the  i n v ar i a n t  measu re s  converge

weak l”  to V 
and ~ , : enp .  , ~s h -

~ 0 by acqu s-ent s  simi l a r
to those i n  vhcorcrna 1 to 2 .  The theorem follows from this and (24).

Q.E.D.

~-i i f lC C  ~~c - :.cL L ) L n I :  cable  aD or t: ct I re’:’ t H - I t j  ~~
( .  i_ s

s tat i o n a r y  -ocre Paid o -
- 
, it  ‘..;ouLri be nice to pro -~ a that. ~a t ) H

op t ima l  w it h  respec t  to a b ::c-ader 2 lass  of ce nt r ol a  th c n  those in

Theorem 4 .  rho c lass  can he broader,ed , bus at  the esl:cnsc of cc-n—

siderablo te rm inology and d e ta i l .  We refer the reader ts [2)

where broader classes c-f comucinison controls are --iea t o ’i th for  a
number of other tyI o:-r of optimization problems .
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